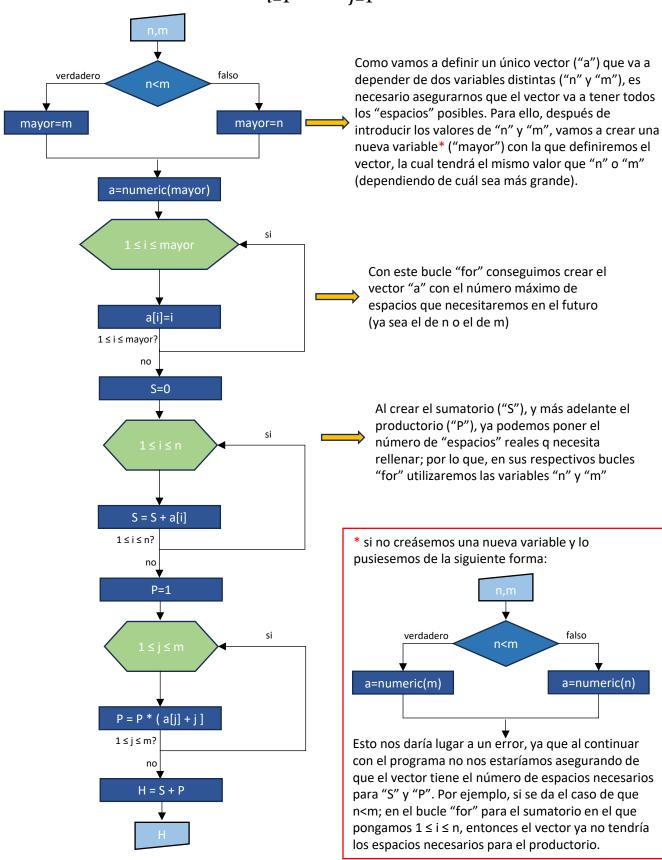
## Recurso 1: Explicación de cómo asegurarse que un vector tenga siempre el número de "espacios" necesarios cuando este depende de dos variables a partir de un ejercico estudiado en clase.

## Grupo T1

Para este primer recurso hemos decidido explicar uno de los ejercicios propuestos por el profesor, ya que uno de los integrantes del grupo no lo llegó a entender y, adicionalmente, creemos que será útil para personas que vayan a tener que estudiar esta asignatura en los próximos años o incluso para las personas de nuestra clase que no lo llegaron a entender.


El ejercicio a explicar es el siguiente:  $H = \sum_{i=1}^n A[i] + \sum_{j=1}^m (A[j]+j)$ , y nos hemos centrado sobre todo en la parte de los límites del sumatorio, ya que era la parte que creemos que tenía más dificultad del problema, y la que la integrante del grupo no llegó a comprender del todo.

Para explicarlo, hemos realizado en primer lugar un diagrama de flujo, ya que es más visual y fácil de entender que si tenemos directamente la ecuación programada en R. Tanto el diagrama de flujo como el programa en R vienen anotados con explicaciones que facilitan aún más el entendimiento.

## **Control de calidad**

La integrante del grupo que no había conseguido entender el problema en clase acabó comprendiéndolo con el recurso realizado.

$$H = \sum_{i=1}^{n} A[i] + \sum_{j=1}^{m} (A[j] + j)$$



## Programa en R

```
#limpiar consola
cat("\014")
#limpiar datos en memoria principal
rm(list=ls())
\#preguntar n (n° de vueltas q da el sumante) & m (n° de vueltas q da el
factorial)
n <- as.numeric(readline(prompt = "Introduce el valor de n: "))</pre>
m <- as.numeric(readline(prompt = "Introduce el valor de m: "))</pre>
#definir si m o n es más grande
#si se hace en un bucle if & se introduce otro valor, no se pierde el
valor menor
if (n < m) {
     mayor = m
} else {
     mayor = n
#definir vector con el valor más grande
#para q sea capaz de usar todos los "slots" si es necesario
#aunque en le bucle para el n° menor no se usen todos los slots xq el
bucle para
a <- numeric(mayor)</pre>
#tmb se puede definir el vector de forma definida
# tmb puedo definir el vector manualmente con valores específicos
\# a <- c(2, 4, 6, 8, 10, 12)
# Verificar si el número de elementos en el vector es suficiente
# if (length(a) < mayor) {</pre>
  #stop("Error: El valor de 'mayor' es mayor que la cantidad de elementos en
el vector.")
# }
# tmb puedo definir el vector usando la función seq() que genera una
secuencia
# a <- seq(1, mayor)
# Esto es equivalente a llenar el vector con números del 1 al valor de
'mayor'
for (i in 1:mayor) {
     a[i]=i
#definir sumante
S=0
#bucle for hasta n, xq el sumante va hasta n
```

```
#aunq el vector sea capaz de utilizar los n° de la variable mayor
#se pide que utilize solo los de la variable n, ya sea la mayor o menor
for (i in 1:n) {
        S = S + a[i]
}

#definir factorial
P=1

#bucle for hasta m, xq el factorial va hasta m
#aunq el vector sea capaz de utilizar los n° de la variable mayor
#se pide que utilize solo los de la variable m, ya sea la mayor o menor
for (j in 1:m) {
        P = P * (a[j]+ j)
}

#sumar sumante y factorial
H=S+P

#imprimir resultado
print(H)
```